Maximizing particle concentration in deterministic lateral displacement arrays
نویسندگان
چکیده
منابع مشابه
Anisotropic permeability in deterministic lateral displacement arrays.
We uncover anisotropic permeability in microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of microparticles, including bioparticles, such as cells. For an application with a given separation size, correct device operation requires that the flow remains at a fixed angle to the obstacle array. We demonstrate via expe...
متن کاملContinuous particle separation through deterministic lateral displacement.
We report on a microfluidic particle-separation device that makes use of the asymmetric bifurcation of laminar flow around obstacles. A particle chooses its path deterministically on the basis of its size. All particles of a given size follow equivalent migration paths, leading to high resolution. The microspheres of 0.8, 0.9, and 1.0 micrometers that were used to characterize the device were s...
متن کاملImproved performance of deterministic lateral displacement arrays with triangular posts
Deterministic lateral displacement arrays have shown great promise for size-based particle analysis and purification in medicine and biology. Here, we demonstrate that the use of an array of triangular rather than circular posts significantly enhances the performance of these devices by reducing clogging, lowering hydrostatic pressure requirements, and increasing the range of displacement chara...
متن کاملParticle Separation with Deterministic Lateral Displacement ( DLD ) : The Anisotropy Effect †
Deterministic lateral displacement (DLD) is a passive and label-free microfluidic separation technique with a strong potential for biological sample preparation purposes. Numerical and experimental models have been proposed so far to predict the particle behavior in DLD channels. However, they do not take into account the influence of the pillar anisotropy that induces a secondary pressure grad...
متن کاملDeterministic lateral displacement for particle separation: a review.
Deterministic lateral displacement (DLD), a hydrodynamic, microfluidic technology, was first reported by Huang et al. in 2004 to separate particles on the basis of size in continuous flow with a resolution of down to 10 nm. For 10 years, DLD has been extensively studied, employed and modified by researchers in terms of theory, design, microfabrication and application to develop newer, faster an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomicrofluidics
سال: 2017
ISSN: 1932-1058
DOI: 10.1063/1.4981014